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Abstract

In this work multi-modal systems subject to impact are considered. Using energy balance techniques for an arbitrary

contact interval the effects of modal vibration can be included. The energy balance is used to obtain a relationship between

the coefficient of restitution and the modal energy during the contact period. This allows the effects of impact induced

vibration to be considered. The subsequent analytical relationships demonstrate that increasing contact duration and

excitation of higher modes can reduce the effective value of the coefficient of restitution. It is also shown how this approach

can be related to work on energetically consistent impacts.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Modelling impacts in mechanical systems is a classical problem which continues to engage many researchers
from different fields. Comprehensive discussions of the subject and reviews of the associated literature can be
found in a range of texts [1–4]. Despite the large amount of work in the area, the intuitively simple approach
defined by Newton [5] of the coefficient of restitution as the ratio of pre- and post-impact velocities, is still
widely used in modelling today. However, limitations in the Newtonian definition of the coefficient of
restitution have led to several redefinitions of this quantity—comprehensive discussions are given by Brogliato
[6] and Stronge [4], see also Refs. [7,8].

A relatively recent definition of the coefficient of restitution is in a form which resolves the effect of
additional energy losses due to impact—primarily vibrations induced in the contacting bodies. Hurmuzlu [9]
introduced this concept for the Panlevé type of problem [6] of a rigid rod striking a horizontal surface. In this
approach an energy balance is used to relate the pre and post impact velocities to the energy dissipation during
contact. A related approach developed by Wagg [10,11] for flexible bodies impacting against a rigid constraint
uses an energy balance between subsequent impacts to account for energy dissipated due to impact induced
vibrations in the flexible body. In the approach described by Hurmuzlu [9], the analysis is for a single impact
and the effect of friction during contact is included. The example discussed by Wagg [11] is for periodic vibro-
impact motion, where friction effects are not included in the model. In both examples an energy balance is
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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applied between a pre- and post-impact velocity state in the system, and the coefficient of restitution is
redefined as an energy loss factor.

In this work, we consider the case of a multi-modal system subject to impact. An energy balance is
developed for an arbitrary contact interval which includes the effects of modal vibration. The energy balance is
used to obtain a relationship between the coefficient of restitution and the modal energy during the contact
period. The subsequent analytical relationships demonstrate that increasing contact duration and excitation of
higher modes can reduce the effective value of the coefficient of restitution. We relate this approach to the
work by Stronge [4] on energetically consistent impacts.

2. Multi-modal systems subject to impact

In this work we restrict our attention to flexible systems with uniformly distributed parameters which can be
modelled by

M €xþ C _xþ Kx ¼ fI ðtÞ, (1)

where M;C;K are the mass, damping and stiffness matrices, respectively, x ¼ fx1;x2 . . . ;xNg
T and fI ðtÞ is the

impact force vector. It is assumed that a single of the xi coordinates is constrained by a compliant motion-
limiting constraint at a distance, xsX0. The area of contact is assumed to be small, and related to the xi

coordinate alone.
The analysis presented here is for systems with uniformly distributed parameters, with the property that

M ¼ mI, C ¼ cD and K ¼ kE, where E is the stiffness coupling matrix as defined by Gladwell [12], D is the
damping coupling matrix I is the identity matrix, and m, c and k are scalars representing the mass, stiffness
and damping. This restriction still includes a wide class of discretised systems including lumped mass systems,
and some discretised models of continuous systems.

Eq. (1) can be decoupled in the normal manner [13] to give

I€qþ N_qþXq ¼
1

m
WTfI ðtÞ, (2)

where q ¼ fq1; q2; . . . qNg
T, x ¼ Wq, W is the orthogonal modal matrix, N ¼ diagf. . . :2zjonj . . . :g,

X ¼ diagf. . . :o2
nj . . . :g ¼ ðk=mÞK, where K is the diagonal eigenvalue matrix and zj ¼

P
nano2n

nj . The
coefficients an are determined to give an appropriate relationship (polynomial fit) between the N zj and onj

values, i.e. extended Rayleigh damping [14]. The choice of damping model is significant, in that it allows the
system to be decoupled. However, as we will see from the energy analysis it also has an effect on the impact
modelling when higher modes are excited by impact.

When an impact occurs, the pre- and post-impact velocities can be related via a coefficient of restitution
matrix written as

_xðtf Þ ¼ R _xðtiÞ; xi ¼ xs, (3)

where ti is the start of impact time, tf is the end of impact time, R ¼ diagf1; 1; . . . ;�e; . . . 1; 1g and e 2 ½0; 1� is
the coefficient of restitution. The position of e in matrix R corresponds to the xi coordinate. The impact is
assumed to be effectively collinear (i.e. no frictional component), so that e can be taken as either the
Newtonian, Poisson or Stronge definition [4].

3. Analysis of energy during the contact period

For the type of multi-modal system considered here, energy loss occurs primarily due to the impact process
and, to a lesser extent, due to vibration damping. In Ref. [11] an energy balance for this system was obtained,
by exploiting the periodicity of vibro-impact motion. An energy balance for the contact period of a rigid bar
impacting on a horizontal surface has been considered by Hurmuzlu [9]. In both cases the objective of the
study was to explain the effect of impact induced vibration on the value of coefficient of restitution used in
modelling an experimental system. Here we consider a modal energy analysis of the contact period tiptptf ,
(as in Ref. [9]) for the system described in Section 2.
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In modal coordinates the coefficient of restitution rule, Eq. (3), becomes

W_qðtf Þ ¼ RW_qðtiÞ. (4)

This leads to the relation for the modal velocities after impact

_qðtf Þ ¼ R̂_qðtiÞ, (5)

where R̂ ¼ WTRW is the matrix which represents the relationship between modal velocities before impact to
modal velocities after impact.

Premultiplying the (modal) equation of motion for an N degree of freedom system, Eq. (2), by m_qT and
integrating (term by term) with respect to t gives an expression for the energy (excluding rigid body modes)
between ti and tf , which can be written as

m

2
ð_qTI_qðtf Þ � _q

TI_qðtiÞÞ þ
k

2
ðqTKqðtf Þ � qTKqðtiÞÞ

¼

Z tf

ti

_qTWTfI ðtÞdt�m

Z tf

ti

_qTN_qdt. ð6Þ

This represents the energy balance during an impact and can be expressed as

KEþ PE ¼ FEi �DE, (7)

where KE is kinetic energy, PE is potential (or strain) energy, FEi the impact force energy and DE the modal
damping energy. All these quantities are the final values, taken at the end of the contact period, and therefore
representing the change of the respective energetic quantity at the end of the impact. The kinetic energy term
(first term in Eq. (6)) can be evaluated using the relations _qðtiÞ ¼ WT _xðtiÞ, _q

TðtiÞ ¼ _xTðtiÞW, _qðtf Þ ¼ WTR _xðtiÞ

and _qTðtf Þ ¼ _xTðtiÞRW, to give

KE ¼
m

2
ð _xTðtiÞRR _xðtiÞ � _xTðtiÞI _xðtiÞÞ, (8)

which reduces to

KE ¼ �
m

2
v20ð1� e2Þ, (9)

where v0 denotes the velocity at impact (ti). Eq. (9) represents the change in kinetic energy over the contact
period—thus a negative quantity (m40 always).

The assumptions that PE � 0 and DE � 0 are equivalent to the assumptions required for rigid body impact
theory (as discussed in detail by Stronge [4]). However, the theoretical formulation developed above allows for
cases when PEa0 and DEa0 which can be the situation in flexible body impact problems.

Consider first the general case when PEa0 and DEa0. In this case the energy balance over the contact
period can be written as

m

2
v20ð1� e2Þ ¼ PEþDE� FEi. (10)

By rearranging Eq. (10) we can obtain an expression for the coefficient of restitution including contact
displacement and modal vibration damping as

ê ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

2

mv20
ðPEþDE� FEiÞ

s
, (11)

where ê now represents the coefficient of restitution including vibration effects. This expression indicates that
the coefficient of restitution is a function of system parameters and impact velocity and the relative energy
input/output during contact [1]. Eq. (11) can be written as

ê ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

RE

KEi

r
, (12)
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where KEi ¼ mv20=2 is the kinetic energy at the start of the contact period, and RE ¼ PEþDE� FEi is the
residual energy for all modes at the end of the contact period. In fact RE will vary dependant on the
assumptions made:
�
 Rigid body impact theory, PE ¼ DE ¼ 0, RE ¼ �FEi. Note that if the impact is assumed to be
instantaneous, it automatically follows that PE ¼ DE ¼ 0.

�
 PE � 0, DEa0—the case, for example, in structures where low velocity impacts and approximately elastic

indentation occurs, but vibration is significant; RE ¼ DE� FEi. This will be called the intermediate case.

�
 Full flexible impact RE ¼ PEþDE� FEi and PEþDEa0.

It is clear from this analysis that the relative value of ê will be affected depending on which modelling
assumptions are used. We note that DE is always positive, and PE would normally be negative—for
permanent post impact displacement. This means that it is possible for certain flexible body impacts that
PEþDE � 0, which could correspond to a situation where rigid body theory can give a good approximation
to the flexible problem.

We also note that Eq. (12) defines a class of physically realisable models assuming that 0pêp1. Then from
Eq. (12), 0pREpKEi where KEi40 is a strictly positive quantity [11] for all v0. It is clear then that the
condition on RE means that the choice of both the impact force model and the damping model are important
in order to obtain a physically realistic overall model.

Of the three cases listed, rigid body theory is well developed, the intermediate case is of current interest, and
the full flexible case an area for future work (and therefore will not be considered in detail here).

3.1. Analysis of the rigid body case

For the rigid body case PE � 0, and the energy damped due to vibrations in the flexible body during impact
is negligible, DE � 0. Then in this case

m

2
v20ð1� e2Þ ¼ �

Z tf

ti

_qTWTfI ðtÞdt ¼ �

Z tf

ti

_xTfI ðtÞdt ¼ �

Z tf

ti

_xif iðtÞdt, (13)

where f i is the impact force which occurs when xi comes into contact with the motion constraint, with velocity
_xi. Note that the right-hand side of Eq. (13) reduces to a scalar integral in this analysis because the vector fI ðtÞ

has only a single non-zero component—in this case, f i.
Now we can use the analysis presented by Stronge [4] which relates the impact force to impulse via the

relation f iðtÞdt ¼ dp, where p is impulse. This gives

m

2
v20ð1� e2Þ ¼ �

Z pðtf Þ¼pf

pðtiÞ¼0

viðpÞdp, (14)

where viðpÞ ¼ _xi is the velocity during impact, which as Stronge points out (for scalar systems) can be
approximated as a linear function of impulse of the form viðpÞ ¼ v0 þ p=m [4]. Evaluating the right-hand side
of Eq. (14) using pf ¼ �mv0ð1þ eÞ [4], gives the kinetic energy lost during impact mv20ð1� e2Þ=2.

3.2. Analysis of the intermediate case

The intermediate case, when PE � 0, DEa0 and RE ¼ DE� FEi, includes a wide class of vibration and
impact problems with low velocity impacts. This is the primary case of interest as the vibration induced by
impact can have a significant effect on the coefficient of restitution, as discussed by both Hurmuzlu [9] and
Wagg and Bishop [11].

In this case the energy balance can be written DE ¼ FEi �KE, which gives

m

Z tf

ti

_qTN_qdt ¼

Z tf

ti

_xif iðtÞdt�
m

2
v20ð1� e2Þ, (15)
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or

m
XN

j¼1

Z tf

ti

_qj2zjonj _qj dt ¼

Z tf

ti

_xif iðtÞdt�
m

2
v20ð1� e2Þ. (16)

This expression together with the condition 0pREpKEi defines an energetically consistent impact-damping
model for the intermediate case. For Eq. (16) to hold, appropriate values of N, zj, e and f i are required.

Therefore, in order to compute energetically consistent simulations of the impact process three key parts of
the model need to be identified: (i) the impact force model, f i; (ii) the number of modes, N; and (iii) the modal
damping coefficients, zi. If experimental data is available, it should be possible to estimate (i)–(iii), however it
is worth noting that the presence of impacts can have a significant effect of modal damping values—see for
example the difference between impacting and non-impact power spectra shown in Ref. [15]. In this case the
use of extended Rayleigh damping allows the modal damping coefficients to be selected appropriately to
ensure energetic consistency in the model. We note that if suitable experimental data is available, the number
of modes could be estimated using proper orthogonal decomposition which has already been considered for
vibro-impact systems by Azeez and Vakakis [16]. Impact force models have been the subject of intensive
research over many years (see Refs. [1,4] for detailed summaries) and one of several standard models can be
selected for f iðtÞ as appropriate.

3.3. Intermediate case example

In Fig. 1 an example is shown for a cantilever beam impacting a constraint. Numerical simulations of this
example were computed using the collocation techniques for a cantilever beam described in Ref. [17]. The
procedure is to decompose the governing equation for the beam into a finite set of modal equations in the form
L

B

C

u (x,t)

a

Harmonic Forcing

x

Fig. 1. Schematic diagram of cantilever beam example. Parameters used in this simulation are beam length, L, 300mm, beam width

25.5mm, beam thickness 0.486mm, Young’s modulus 2:05� 1011 N=m2, density 8500kg=m3, degrees of freedom, N ¼ 8, z1 ¼ 0:0007,
z2 ¼ 0:1164, z3 ¼ 0:2046, z4 ¼ 0:2469, z5 ¼ 0:3174, z6 ¼ 0:3526, z7 ¼ 0:2116, z8 ¼ 0:14107, stop distance a ¼ 0:01m.
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Fig. 2. Schematic representation of a rate dependent compliant impact during the contact interval tiptptf : (a) displacement; (b) velocity;

(c) impact force; (d) impulse; (e) kinetic energy; (f) potential energy; (g) impact force energy; (h) modal damping energy. Note the plotting

convention for force and impulse ((c) and (d)), is to use absolute values jjf I jj and kpk. This simulation was computed using the same

example as described in Ref. [17] combined with a Simon impact model described in Ref. [4, Chapter 5], with stiffness kw ¼ 1� 105 and

damping cw ¼ 0:0485.
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of Eq. (2). These equations are then put into first-order form and iterated forward in time using a Rosenbrock
method. Rosenbrock is required because the large difference in the beam and impact stiffness leads to a stiff
set of first-order ordinary differential equations. The impact force model used in this case was a Simon impact
model of the form

f i ¼ �kwjdj1=2ðdþ cwjdj_dÞ, (17)

where d ¼ uðB; tÞ � a for uðB; tÞ4a is the indentation—see Ref. [4, Chapter 5], The impact force is evaluated at
each time-step during contact, when tiptptf . The beam simulation is started in free vibration from an initial
deflection away from the impact stop. The data from the first impact to occur is then recorded.

Fig. 2 shows typical results for a intermediate case behaviour where PE � 0 and DEa0. Physical and
energetic quantities over the contact period are shown schematically, to demonstrate typical behaviour for this
type of impact-damping system.

The velocity–time (and also velocity–impulse) relationship in this case is now typically nonlinear, as shown
in Fig. 2(b)—as opposed to the linear assumption used in the rigid body case [4]. From Fig. 2(h), we see that
increasing the contact interval (or number of modes) will typically increase the final DE value because DE
increases as a (weakly) monotonic function of time. This would then typically reduce the effective value of the
coefficient of restitution compared to the rigid body case, where DE is effectively zero. The final energy
balance represented by Eq. (7) would be found from the computing the values in Fig. 2(e)–(h) at time tf —note
these are not shown to scale in Fig. 2.
4. Conclusion

The main motivation for this work has been to model impact induced vibration effects on the coefficient of
restitution value during impact. The analysis presented here leads to an analytical relationship that relates the
coefficient of restitution as a function of impact velocity v0, and energy terms PE, DE, and FEi. For the
intermediate case, the following observations can be made:
(1)
 Accurate modelling requires the appropriate choice of number of modes of vibration, damping model and
impact force model.
(2)
 Increased contact duration and/or excitation of higher modes increase DE, which in turn typically reduces
RE and the effective coefficient of restitution.
(3)
 For energetically consistent impacts 0pREpKEi and KEþ PE ¼ FEi �DE at time tf .
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